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Swiss Franc Unpeg

On January 15th 2015, the Swiss National Bank unexpectedly removed the peg of 1.20

francs per euro. In the initial reaction to the news, the Swiss franc rallied a massive

30% versus the euro and 25% against the US dollar.
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Foreign Asset Holdings

Source: Opie and Riddiough, Global Currency Hedging with Common Risk Factors,

2018.
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Currency Risk Management

1. FX Market and Interest Rate Parities

2. Currency Hedging and Risk Management

3. Joint Optimization of Assets and Currencies

4. Currency Risk Management: Summary and Implications

5. Machine Learning: The Future of Financial Risk Management?
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FX Market and Interest Rate

Parities



What Is the FX Market?

▷ Foreign Exchange (FX) is the global marketplace for trading national currencies.

▷ With around 7–8 trillion USD traded daily, FX is the largest financial market in

the world.

▷ Trades occur 24 hours a day, five days a week, across major financial centers.

▷ The market is highly liquid, resulting in tight bid-ask spreads and low transaction

costs.

▷ The FX market is largely decentralized, operating over-the-counter (OTC) rather

than on a central exchange.
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Who Trades in the FX Market?

▷ FX participants span across sectors, with different motives:

• Corporations: Manage foreign revenues and costs (e.g., exports/imports).

• Asset Managers: Rebalance global portfolios, currency overlay.

• Hedge Funds: Speculative trading on macro views.

• Central Banks: Currency stability, monetary policy.

• Banks/Dealers: Market making and arbitrage.

▷ Activities range from hedging to speculation.

▷ Instruments: Spot, Forward, Swap, Option, Non-Deliverable Forward (NDF).
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Why Does Currency Risk Matter?

▷ Currency fluctuations affect:

• Investment returns in foreign assets.

• Corporate earnings and competitiveness.

• Balance sheets of firms and sovereigns.

▷ Even passive investors face unhedged FX exposure in global portfolios.

▷ FX risk management helps reduce volatility and protect against unexpected

exchange rate movements.
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Covered Interest Rate Parity

▷ Covered interest rate parity is a no-arbitrage condition representing an equilibrium

state under given interest rates available on bank deposits in two countries.

▷ Investors should not earn arbitrage profits by borrowing in a country with a lower

interest rate, exchanging for foreign currency, and investing in a foreign country

with a higher interest rate, due to gains or losses from exchanging back to their

domestic currency at maturity.

▷ Consider a domestic investor who invests into a foreign money or bond market.

▷ Let rdt,k denote the k-period cumulative discrete interest (with compounding)

earned on the domestic currency at time t.

▷ Let r ft,k denote the k-period cumulative discrete interest (with compounding)

earned on the foreign currency at time t.
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Covered Interest Rate Parity

▷ Let St denote the spot exchange rate expressed as the number of units of

domestic currency (e.g., CHF) per unit of foreign currency (e.g., EUR), for

example, 0.95 CHF per EUR.

▷ Let Ft,k denote the forward foreign exchange rate, i.e., the FX rate one can agree

to today for a foreign currency transaction with delivery in k periods. If one sells

the foreign currency forward, she will receive Ft,k units of the domestic currency

per unit of foreign currency at time t + k .

▷ By no arbitrage, the forward rate is given by:

Ft,k = St
1 + rdt,k

1 + r ft,k
.
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Covered Interest Rate Parity

▷ This result is known as covered interest parity (CIP). It says that the forward rate

must be such that the return on a riskless investment in the domestic currency

(1 + rdt,k) is identical to that of a hedged investment in the foreign currency,

Ft,k(1 + r ft,k)/St .

▷ Put differently, borrowing at home and lending abroad or doing the reverse earns

zero return if the FX risk is hedged.
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Uncovered Interest Rate Parity

▷ Uncovered interest rate parity considers the return from an unhedged investment

in foreign currency.

▷ It states that the expected return from an investment in foreign currency should

be the same as that of an investment in domestic currency – on average, the FX

appreciation/depreciation should offset the interest rate differential.

▷ The uncovered interest rate parity (UIP) is:

(1 + rdt,k) =
Et [St+k ]

St
(1 + r ft,k).

▷ For example, if r ft,k > rdt,k , UIP says that the foreign currency should, on average,

depreciate at a rate matching the interest rate differential in order to make the

domestic and foreign investments equally profitable. If you gain on the interest

rate differential you tend to lose on the exchange rate move.
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Uncovered Interest Rate Parity

▷ Thus, UIP claims that Ft,k = Et [St+k ] – the forward rate is an unbiased predictor

of the future spot rate.

▷ By contrast with CIP, UIP is not an arbitrage relationship. It is a condition based

on equilibrium reasoning that may or may not hold.

▷ One case where UIP should hold is that where investors are risk-neutral.

▷ There are actually two statements in UIP:

• There is no risk premium from holding the foreign currency – the

appreciation/depreciation of the foreign currency offsets the interest rate

differential.

• Currency excess returns are unpredictable.
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Uncovered Interest Rate Parity

▷ Empirically, UIP does not hold: there is a currency risk premium and foreign

exchange returns are predictable.

▷ On average, countries with high interest rates also experience an appreciation of

their currency.

▷ This means that there are profitable opportunities, i.e., one can capture a positive

currency risk premium by borrowing in low interest rate countries and investing in

high interest rate countries. However, such a strategy is subject to steep

drawdowns.
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Currency Carry Trade

▷ The carry trade is a popular trading strategy that exploits deviations from UIP (if

UIP would hold empirically, carry trade would not be possible).

▷ Carry traders borrow in low interest rate currencies and lend in high interest rate

currencies.

▷ Let r ft,k > rdt,k , then the carry trade involves going long the foreign currency and

short domestic (and vice versa for r ft,k < rdt,k).

▷ The return Rt,k from borrowing in the domestic currency and taking a long

position in the foreign currency is:

Rt,k = (1 + r ft,k)
St+k

St
− (1 + rdt,k).

▷ A trader stands to make a profit of the difference in the interest rates of the two

countries as long as the exchange rate between the currencies does not change.
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Currency Carry Trade

The cumulative returns to the carry (and momentum) portfolios are almost as high as

the cumulative return to investing in stocks!

Source: Burnside et al., Carry Trade and Momentum in Currency Markets, 2011. 14/71



Currency Hedging and Risk

Management



International Asset Allocation

▷ International asset allocation is a natural way to improve risk-adjusted portfolio

performance → diversification.

▷ One of the main challenges for global asset allocation is the currency risk.

▷ Foreign currency exposure adds risk and full hedging is theoretically and

empirically not optimal → we can do better by taking into account the

correlations → currency overlay portfolios.

▷ The return in domestic currency of an investment in an asset denominated in

foreign currency has two components:

• The return on the investment expressed in foreign currency; and

• The return on the foreign currency expressed in domestic currency.
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Hedged Portfolio Return

▷ Variables at time t:

• Pi ,t : Value of asset i in local currency.

• R̃i ,t+1 = (Pi ,t+1 − Pi ,t)/Pi ,t : Simple return of asset i .

• Sc,t : Spot foreign exchange rate in domestic terms per foreign currency c .

• ec,t+1 = (Sc,t+1 − Sc,t)/Sc,t : Return of the foreign exchange rate.

▷ Return of an unhedged investment in domestic terms R̄i ,t+1:

R̄i ,t+1 =
Pi ,t+1Sc,t+1

Pi ,tSc,t
− 1 = (1 + R̃i ,t+1)(1 + ec,t+1)− 1 =

= R̃i ,t+1 + ec,t+1 + R̃i ,t+1ec,t+1.
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Hedged Portfolio Return

▷ Denote with xi ,t a fraction of wealth invested in asset i at time t.

▷ Consider an investor with an arbitrary domestic currency and a portfolio consisting

of N assets.

▷ The unhedged portfolio return is given by

RP,t+1 =
N∑
i=1

xi ,t R̄i ,t+1.
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Hedged Portfolio Return

▷ Variables at time t:

• Fc,t : Forward exchange rate in domestic currency per foreign currency c .

• fc,t = (Fc,t − Sc,t)/Sc,t : The forward premium.

• ϕc,t : Relative notional value of the forward contract position (short for

ϕc,t > 0) in currency c , expressed as a percentage of total portfolio value.

▷ Suppose that there is a universe of K possible foreign currencies which can be

traded on the market. The return of a portfolio with currency forwards is equal to

Rh
P,t+1 = RP,t+1 +

K+1∑
c=2

ϕc,t(fc,t − ec,t+1). (1)

▷ For the domestic currency c = 1, set ϕ1,t = 1−
∑K+1

c=2 ϕc,t .
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Hedged Portfolio Return

▷ Denote with Ac,t a set of all assets denominated in currency c . Then,

wc,t :=
∑

j∈Ac,t
xj ,t is a fraction of wealth invested in assets denominated in

currency c .

▷ Define a hedge ratio as hc,t := ϕc,t/wc,t , for wc,t ̸= 0.

▷ Return of a fully hedged portfolio, where hc,t = 1 for c = 2, . . . , k + 1 and

ϕc,t = 0 for c = k + 2, . . . , n + 1, is equal to

R fh
P,t+1 =

N∑
i=1

xi ,t R̃i ,t+1 +
K+1∑
c=2

wc,t fc,t +
N∑
i=1

xi ,t R̃i ,t+1ec,t+1.
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Hedged Portfolio Return

▷ Define an exposure to currency c as ψc,t := wc,t − ϕc,t .

▷ Hedged portfolio return from (1) can be rewritten as

Rh
P,t+1 = R fh

P,t+1 +
K+1∑
c=2

ψc,t(ec,t+1 − fc,t). (2)

▷ Domestic currency exposure becomes ψ1,t = −
∑n+1

c=2 ψc,t , which implies that the

currency portfolio is a zero investment portfolio.

▷ Note that these expressions are model-free! No underlying dynamics for asset or

currency returns assumed.
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Currency Hedging and Risk Management

▷ Optimal currency overlay (i.e., currency hedging portfolio) usually refers to the

optimal exposure Ψ∗
t,risk that minimizes the variance of the hedged portfolio

returns from (2):

Ψ∗
t,risk = argmin

Ψt

{
Var(Rh

P,t+1)
}
= −Var(et+1 − ft)

−1 · Cov(R fh
P,t+1, et+1 − ft),

(3)

where the (K × K ) matrix Var−1(et+1 − ft) is the inverse of the covariance

matrix of the excess currency returns, and the (K × 1) vector

Cov(R fh
P,t+1, et+1 − ft) represents the covariances between the fully hedged

portfolio returns and the excess currency returns.

▷ Derivation: Take the vector derivative of Var(Rh
P,t+1) w.r.t. Ψt , apply first- and

second-order optimality conditions.
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Currency Hedging and Risk Management

▷ Intuition: Hedge more against currencies with high variance and positive

correlation to (fully hedged) portfolio returns.

▷ For easier interpretation, assume K = 1:

• In case of zero correlation (covariance) between the asset portfolio and

currency excess returns Cov(Rh
P,t+1, et+1 − ft) = 0, it is optimal to fully

hedge (have zero currency exposure). In this case currency exposure only

adds risk to the investor’s portfolio.

• If Cov(Rh
P,t+1, et+1 − ft) > 0 an investor can decrease risk by over-hedging.

• If −Var(et+1 − ft) < Cov(Rh
P,t+1, et+1 − ft) < 0 partial hedging is optimal.

• If Cov(Rh
P,t+1, et+1 − ft) < −Var(et+1 − ft) it is optimal to under-hedge

(increase exposure to such risk reducing currency).
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Currency Hedging and Risk Management

▷ Let’s compute the optimal currency exposure Ψ∗
t,mv that maximizes the

mean-variance objective:

Ψ∗
t,mv = argmax

Ψt

{
E[Rh

P,t+1]−
λ

2
Var(Rh

P,t+1)

}
= −Var(et+1 − ft)

−1 ·
[
Cov(R fh

P,t+1, et+1 − ft)−
1

λ
E[et+1 − ft ]

]
= Ψ∗

t,risk+
1

λ
Var(et+1 − ft)

−1E[et+1 − ft ].

▷ Observe that Ψ∗
t,mv can be interpreted as a sum of: Ψ∗

t,risk and the market price

of currency risk, which represents the trade-off between the expected excess

return on currencies and the variance of these returns.

▷ In the presence of constraints on Ψ∗
t,risk or Ψ∗

t,mv , the solution is obtained via

quadratic programming.
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Currency Hedging and Risk Management

▷ The optimal variance-minimizing currency exposure Ψ∗
t,risk can equivalently be

obtained from a multivariate OLS regression, see Campbell et al. (2010).

▷ Regress the demeaned fully hedged portfolio return R fh
P,t+1 on the demeaned

excess currency returns (et+1 − ft), without an intercept, and swap the sign of the

regression coefficients:

R fh
P,t+1 = (−Ψ⊤

t )(et+1 − ft) + εt+1.

▷ The estimated regression coefficients Ψ∗
t,risk correspond to the optimal currency

exposures that minimize the variance of the hedged portfolio returns.

▷ This OLS interpretation provides an intuitive view: hedge more against currencies

that co-move with the fully hedged portfolio return.

24/71



Replication of Campbell et al. (2010)

▷ I replicate some of the key results from Global Currency Hedging (Campbell,

Serfaty-de Medeiros, and Viceira, 2010) using more recent data.

▷ Table 1: A domestic investor chooses one foreign currency at a time to minimize

portfolio return variance. Reported currency positions are the amounts of dollars

invested in foreign currency per dollar in the portfolio.

▷ Table 2: The investor chooses a vector of positions across all available currencies

simultaneously. Results reflect optimal variance-minimizing exposure per currency.

▷ In both tables, the investor holds a domestic equity portfolio and takes foreign

currency positions purely for risk reduction.
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Replication of Campbell et al. (2010)

Table 1: Optimal Single-Currency Exposure for Single-Country Portfolios

Currency

Stock Market Australia Canada Switzerland Eurozone UK Japan USA

Australia 0.49∗∗ 0.61∗∗∗ 0.65∗∗∗ 0.39∗∗∗ 0.49∗∗∗ 0.51∗∗∗

(0.21) (0.13) (0.19) (0.13) (0.05) (0.10)

Canada −0.70∗∗ 0.60∗∗∗ 0.52∗∗∗ 0.23 0.61∗∗∗ 0.94∗∗∗

(0.28) (0.16) (0.15) (0.18) (0.14) (0.23)

Switzerland −0.76∗∗∗ −0.64∗∗∗ −0.81∗∗∗ −0.69∗∗∗ 0.25 −0.20

(0.11) (0.14) (0.30) (0.16) (0.19) (0.19)

Eurozone −0.76∗∗ 0.08 1.11∗∗ −0.02 0.87∗∗∗ 1.10∗∗∗

(0.31) (0.21) (0.57) (0.32) (0.17) (0.26)

UK −0.70∗∗∗ −0.49∗∗∗ 0.33∗ 0.14 0.34∗∗∗ 0.34

(0.13) (0.14) (0.18) (0.16) (0.12) (0.26)

Japan −0.70∗∗∗ −0.92∗∗∗ −0.50 −0.52∗ −0.74∗∗∗ −0.90∗∗∗

(0.13) (0.16) (0.35) (0.31) (0.17) (0.25)

USA −0.67∗∗∗ −0.90∗∗∗ −0.02 −0.23 −0.58∗ 0.41∗∗

(0.12) (0.22) (0.20) (0.25) (0.30) (0.19)
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Optimal Currency Allocations

▷ Table 1 shows that optimal demands for foreign currency are large, positive, and

statistically significant for two stock markets (rows of the table), those of

Australia and Canada.

▷ Investors in the Australian and Canadian stock markets are keen to hold foreign

currency, regardless of the particular currency under consideration, because the

Australian and Canadian dollars tend to depreciate against all currencies when

their stock markets fall.

▷ Thus, any foreign currency serves as a hedge against fluctuations in these stock

markets.

▷ The long positions in euros, Swiss francs, or US dollars are particularly large and

statistically significant.

27/71



Optimal Currency Allocations

▷ At the opposite extreme, it is optimal for investors in the Swiss and Japanese

stock markets to hold economically and statistically large short positions

(exposures) in almost all currencies.

▷ This implies that the Swiss franc and Japanese yen tend to appreciate against

(almost) all currencies when the Swiss and Japanese stock markets fall.

▷ Results are similar for the US dollar.

▷ The Euroland stock market generates large positive demand for the Swiss franc,

Japanese yen and US dollar, and negative or zero demands for all other currencies.
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Replication of Campbell et al. (2010)

Table 2: Optimal Multiple-Currencies Exposure for Single-Country Portfolios

Currency

Stock Market Australia Canada Switzerland Eurozone UK Japan USA

Australia −0.40∗∗∗ −0.29∗∗ 0.04 0.34 −0.31∗∗ 0.36∗∗∗ 0.25∗

(0.10) (0.13) (0.23) (0.27) (0.15) (0.09) (0.14)

Canada −0.77∗∗∗ −0.28 0.14 0.59∗∗ −0.34∗∗ 0.22∗∗ 0.45∗∗∗

(0.14) (0.18) (0.20) (0.23) (0.13) (0.10) (0.13)

Switzerland −0.58∗∗∗ −0.17 0.61∗∗∗ 0.10 −0.26∗ 0.31∗∗∗ −0.02

(0.14) (0.18) (0.20) (0.21) (0.15) (0.12) (0.17)

Eurozone −0.68∗∗∗ −0.24 0.08 −0.18 −0.52∗∗∗ 0.30∗∗ 1.25∗∗∗

(0.15) (0.19) (0.36) (0.40) (0.19) (0.14) (0.16)

UK −0.76∗∗∗ −0.27∗∗ 0.12 0.31 0.15 0.30∗∗∗ 0.15

(0.12) (0.13) (0.21) (0.24) (0.12) (0.09) (0.14)

Japan −0.40∗∗ −0.61∗∗ 0.15 0.73∗ −0.55∗∗ 0.81∗∗∗ −0.14

(0.19) (0.28) (0.34) (0.39) (0.26) (0.31) (0.31)

USA −0.72∗∗∗ −0.33∗∗ 0.30∗ 0.42∗∗ −0.35∗∗ 0.32∗∗∗ 0.36∗∗

(0.15) (0.13) (0.17) (0.21) (0.14) (0.12) (0.16)
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Optimal Currency Allocations

▷ When single-country stock market investors consider investing in all currencies

simultaneously, they almost always choose positive exposures to the Swiss franc,

Euro, Japanese yen and US dollar, and negative exposures to the Australian

dollar, Canadian dollar, and British pound.

▷ Relative to Table 1, the optimal currency demands are generally larger and

statistically more significant for the US dollar, and less statistically significant for

the euro and the Swiss franc.
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Optimal Currency Allocations

▷ This reflects two features of the multiple-currency analysis:

• First: A position that is long the US dollar and short the Canadian dollar is

an effective hedge against stock market declines.

• Thus, allowing investors to use both North American currencies increases the

risk management demand for the US dollar.

• Second: The euro and Swiss franc are both good hedges but they are highly

correlated; thus, the demand for each currency is less precisely estimated

when investors are allowed to take positions in both currencies.

• In this sense the euro and the Swiss franc are substitutes for one another.

▷ Note: Risk-minimizing currency demands for internationally diversified bond

market investors are generally very small and not statistically significantly different

from zero ⇒ full hedging is optimal.
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Global Currency Hedging with Ambiguity

Ulrych & Vasiljević (2025), Journal of Banking & Finance

Link: https://doi.org/10.1016/j.jbankfin.2024.107366

▷ We study optimal currency exposure for an international investor who is both risk-

and ambiguity-averse.

▷ Methodologically, we show that ambiguity leads to a generalized ridge regression

solution for currency hedging.

▷ Ambiguity aversion strengthens hedging demand and improves the stability of

out-of-sample allocations.

▷ Empirically, we find that accounting for ambiguity reduces portfolio volatility net

of transaction costs and narrows the confidence intervals for optimal currency

positions.
32/71
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Optimal Currency Exposure with Ambiguity

▷ Model uncertainty: The situation in which an investor is uncertain about the true

probabilistic model governing the occurrence of different states.

▷ Notation:

• λ: positive coefficient representing risk aversion,

• θ: positive coefficient representing ambiguity aversion,

• Q: particular model (probability measure) from the set of possible models Q,

• µ: agent’s prior probability on the space ∆ of possible models from Q,

• Q̄: reduced probability
∫
∆Q dµ(Q) induced by the prior µ.

▷ A risk-and-ambiguity-averse international investor maximizes the robust

mean-variance utility

max
Ψt

U(Rh
P,t+1) = max

Ψt

{
EQ̄[R

h
P,t+1]−

λ

2
VarQ̄(R

h
P,t+1)−

θ

2
Varµ(EQ[R

h
P,t+1])

}
.
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Optimal Currency Exposure with Ambiguity

▷ The argument Ψ∗
t that maximizes the above expression is the optimal currency

exposure for a risk-and-ambiguity-averse international investor

Ψ∗
t = −

[
λVarQ̄(et+1 − ft) + θVarµ (EQ[et+1 − ft ])

]−1 ·[
λCovQ̄(R

fh
P,t+1, et+1 − ft) + θCovµ(EQ[R

fh
P,t+1],EQ[et+1 − ft ])− EQ̄[et+1 − ft ]

]
.

▷ Special case I: Infinite risk aversion (i.e., λ→ ∞)

Ψ∗
t,risk := lim

λ→∞
Ψ∗

t = −VarQ̄[ et+1 − ft ]
−1 · CovQ̄[R

fh
P,t+1, et+1 − ft ].

▷ Special case II: Infinite ambiguity aversion (i.e., θ → ∞)

Ψ∗
t,amb := lim

θ→∞
Ψ∗

t = −Varµ[EQ[ et+1−ft ] ]
−1·Covµ[EQ[R

fh
P,t+1 ],EQ[ et+1−ft ] ].
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Optimal Currency Exposure with Ambiguity

▷ Special case III: Risky assets and ambiguous currencies (domestic cash is risk-free,

fully hedged assets are purely risky, and foreign assets and currencies are

ambiguous)

Ψ∗
t,fh = −

(
VarQ̄[ et+1 − ft ] +

θ

λ
Varµ[EQ[et+1 − ft ] ]

)−1

·
(
CovQ̄[R

fh
P,t+1, et+1 − ft ]−

1

λ
EQ̄[et+1 − ft ]

)
.

• Observe:

When λ→ ∞, the optimal currency exposure converges to Ψ∗
t,risk .

When θ → ∞, the optimal currency exposure converges to zero (i.e., full

hedging).
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Global Currency Hedging with Ambiguity: Empirical Analysis

▷ Empirical study of the impact of risk and ambiguity on the optimal currency

exposure. Focus on analyzing the (ambiguity-adjusted) hedging demand (i.e., no

speculative demand) =⇒ ordinary ridge regression.

▷ The empirical analysis employs the data of: spot and forward currency exchange

rates, equity broad market indices, and fixed income total return indices.

▷ The data is obtained from Refinitiv Datastream and covers the period from

January 1999 (the euro’s inception) to December 2019 for seven developed

economies: Australia, Canada, Switzerland, Eurozone, United Kingdom, Japan,

and United States.

▷ We assume a diversified portfolio consisting of equities and government bonds,

with a ratio of three-to-one in favor of equities, equally weighted across the seven

economies.
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In-Sample Analysis: The Impact of Ambiguity Aversion

Figure 1: Optimal hedging demand in EUR and GBP for a USD-based investor and the

corresponding 90% confidence intervals estimated with the non-parametric bootstrap, as a

function of θ/λ. 37/71



In-Sample Analysis: The Impact of Ambiguity Aversion

Optimal In-Sample Currency Exposure

Currency
Base

Currency Model AUD CAD CHF EUR GBP JPY USD

CHF

RO
−0.47∗∗∗ −0.30∗ 0.22 0.27 −0.33∗∗ 0.26∗∗∗ 0.35∗∗

(0.11) (0.15) (0.20) (0.22) (0.15) (0.08) (0.13)

AA
−0.45∗∗∗ −0.25∗∗ 0.26 0.17 −0.26∗∗ 0.27∗∗∗ 0.27∗∗

(0.09) (0.11) (0.18) (0.16) (0.11) (0.08) (0.11)

EUR

RO
−0.47∗∗∗ −0.29∗ 0.21 0.28 −0.34∗∗ 0.26∗∗∗ 0.35∗∗

(0.11) (0.15) (0.20) (0.22) (0.15) (0.08) (0.13)

AA
−0.46∗∗∗ −0.25∗∗ 0.17 0.27 −0.28∗∗ 0.27∗∗∗ 0.28∗∗∗

(0.09) (0.11) (0.15) (0.18) (0.12) (0.07) (0.10)

USD

RO
−0.47∗∗∗ −0.32∗∗ 0.27 0.25 −0.34∗∗ 0.25∗∗∗ 0.35∗∗

(0.11) (0.15) (0.20) (0.21) (0.14) (0.08) (0.13)

AA
−0.44∗∗∗ −0.29∗∗ 0.24∗ 0.20 −0.28∗∗ 0.25∗∗∗ 0.33∗∗∗

(0.10) (0.12) (0.14) (0.14) (0.11) (0.08) (0.12)

Table 1: The estimated optimal hedging demand and the corresponding standard deviations

are reported for risk-only (RO) and ambiguity-adjusted (AA) investors with θ = 0 and θ = λ. 38/71



Global Currency Hedging with Ambiguity: Out-of-Sample Backtest

▷ Analyze the out-of-sample performance of model based hedging (RO and AA

hedge) in comparison to the naive benchmarks (zero, half, and full hedge).

▷ Currency hedging is implemented using forward contracts which are rolled over

quarterly.

▷ We assume that asset positions are also rebalanced quarterly such that initial

portfolio weights are preserved over the backtest.

▷ The constrained strategies RO-C and AA-C restrict the currency exposures to the

interval [−2
7 ,

3
7 ] ensuring the symmetric treatment of over- and under-hedging.

▷ All results are presented net of transaction (hedging) costs, which are assumed to

be 10 basis points relative to the notional of the entered currency forward

contract.
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Global Currency Hedging with Ambiguity: Out-of-Sample Backtest

Naive Hedge Model Hedge

Panel A: CHF Zero Half Full RO RO-C AA AA-C

Average (%) 5.31 5.14 4.98 5.20 5.11 4.46 4.51

Volatility (%) 12.87 10.70 9.34 9.09 7.38 7.23 7.19

Sharpe Ratio 0.41 0.48 0.53 0.57 0.69 0.62 0.63

Sortino Ratio 0.56 0.66 0.73 0.81 0.98 0.86 0.87

Turnover 0 0.43 0.86 2.36 1.82 1.33 1.33

Panel B: EUR Zero Half Full RO RO-Con AA AA-Con

Average (%) 7.21 6.39 5.56 6.20 6.39 5.33 5.37

Volatility (%) 10.10 9.41 9.35 9.00 7.35 7.17 7.17

Sharpe Ratio 0.71 0.68 0.59 0.69 0.87 0.74 0.75

Sortino Ratio 0.99 0.93 0.81 1.00 1.26 1.04 1.04

Turnover 0 0.43 0.86 2.42 1.79 1.21 1.21

Panel C: USD Zero Half Full RO RO-Con AA AA-Con

Average (%) 6.75 6.67 6.59 7.18 7.04 6.29 6.29

Volatility (%) 12.82 10.78 9.34 9.20 7.27 7.04 7.04

Sharpe Ratio 0.53 0.62 0.71 0.78 0.97 0.89 0.89

Sortino Ratio 0.74 0.86 0.97 1.14 1.39 1.26 1.25

Turnover 0 0.43 0.86 2.56 1.82 1.26 1.26
40/71



Global Currency Hedging with Ambiguity: Out-of-Sample Backtest

Figure 2: Temporal dynamics of the optimal currency exposures for the model-based

strategies, including an additional AA-based strategy called ‘AA Extreme’ with θ/λ = 40. 41/71



Global Currency Hedging with Ambiguity: Conclusion

▷ Closed-form expressions of the optimal currency exposure for a

risk-and-ambiguity-averse robust mean-variance investor are derived.

▷ The optimal currency exposure capturing investor’s dislike for risk and ambiguity is

characterized by a generalized ridge regression =⇒ the penalty term corresponds

to the utility loss arising from model uncertainty and induces shrinkage.

▷ Elevated ambiguity aversion can lead to insufficient currency diversification of

global investors.

▷ Accounting for ambiguity

• corresponds to an increase in bias and a simultaneous shrinkage of the

confidence intervals of the sample efficient optimal currency exposure;

• enhances the stability of the estimated optimal currency exposures and

significantly reduces the portfolio volatility in- and out-of-sample.
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Dynamic Currency Hedging with Non-Gaussianity and Ambiguity

Polak & Ulrych (2024), Quantitative Finance

https://doi.org/10.1080/14697688.2023.2301419

▷ We propose a dynamic currency hedging strategy under non-Gaussian return

dynamics and investor-specific ambiguity.

▷ Ambiguity is parametrized from market data using a continuous mean-variance

mixture representation.

▷ We provide a closed-form solution for mean-variance hedging and a numerical

algorithm for optimizing arbitrary risk measures (e.g., expected shortfall) via

generalized filtered historical simulation.

▷ An out-of-sample backtest shows the proposed strategy is robust, risk-reductive,

and outperforms both constant and Gaussian benchmarks net of transaction costs.
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Joint Optimization of Assets and

Currencies



Sparse and Stable International Portfolio Optimization

Burkhardt & Ulrych (2023), Journal of International Money and Finance

https://www.sciencedirect.com/science/article/pii/S026156062300150X

▷ We propose a joint optimization framework for international asset and currency

allocation with regularization to improve out-of-sample performance.

▷ Regularized optimization yields sparse and stable portfolio weights, reducing

sensitivity to parameter uncertainty.

▷ The joint optimization approach outperforms standard currency overlay strategies

and equally-weighted fully hedged portfolios, net of transaction costs.

▷ The paper challenges the industry practice of separate hedging (i.e., currency

overlay), showing that joint optimization leads to improved risk-adjusted

performance.
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International Portfolio Optimization: Hedged Portfolio Return

▷ Return in domestic currency:

R̃u
i ,t+1 =

Pi ,t+1Sci ,t+1

Pi ,tSci ,t
− 1 = Ri ,t+1 + eci ,t+1 + Ri ,t+1eci ,t+1.

▷ Portfolio return:

R̃u
P,t+1 =

N∑
i=1

xi ,t R̃
u
i ,t+1.

▷ Hedged portfolio return:

R̃h
P,t+1 = R̃u

P,t+1 +
M+1∑
c=2

ϕc,t(fc,t − ec,t+1),

with

fc,t =
(Fc,t − Sc,t)

Sc,t
.
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International Portfolio Optimization Problem

▷ Separate optimization problem:

x∗
t = argmax

xt

{
E(R̃ fh

P,t+1)−
γ

2
Var(R̃ fh

P,t+1)
}

= argmax
xt

{
xT
t µ

a − γ

2
xT
t Σaxt

}
subject to xT

t 1N = 1,

ϕ∗
t | x∗

t = argmax
ϕt

{
E(R̃h

P,t+1)−
γ

2
Var(R̃h

P,t+1) | x∗
t

}
= argmax

ϕt

{
ϕT
t µ

c − γ

2
ϕT
t Σ

cϕt − γx∗T
t Σacϕt | x∗

t

}
.
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International Portfolio Optimization Problem

▷ Joint optimization problem:

θt := (x1,t , ..., xN,t , ϕ2,t , ..., ϕM+1,t),

rt+1 := (R̃u
1,t+1, . . . , R̃

u
N,t+1, (f2,t − e2,t+1), . . . , (fM+1,t − eM+1,t+1)),

θ∗t = argmax
θt

{
E(R̃h

P,t+1)−
γ

2
Var(R̃h

P,t+1)
}

= argmax
θt

{
θTt µ− γ

2
θTt Σθt

}
subject to θTt qN,M = 1,

with

µ = E(rt+1) and Σ = Var(rt+1),

and where qN,M denotes an (N +M)× 1 vector with the first N elements equal

to one and the rest M elements equal to zero.
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Sparse Multi-Currency Portfolio

▷ Separate optimization:

x∗
t = argmin

xt

{ γ

2
xT
t Σ̂axt − xT

t µ̂
a + λa1∥xt∥1

}
subject to xT

t 1N = 1,

ϕ∗
t | x∗

t = argmin
ϕt

{ γ

2
ϕT
t Σ̂

cϕt − ϕT
t µ̂

c + γx∗T
t Σ̂acϕt + λc1∥ϕt∥1 | x∗

t

}
.

▷ Joint optimization:

θ∗t = argmin
θt

{ γ

2
θTt Σ̂θt − θTt µ̂+ ∥Sθt∥1

}
subject to θTt qN,M = 1.

▷ Denoted by NC1 in the empirical analysis.
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Stable Multi-Currency Portfolio

▷ Shrinkage estimator for the covariance matrix:

Σ̂s = vΣ̂g + (1− v)Σ̂.

▷ Corresponding joint optimization problem:

θ∗t = argmin
θt

{ γ

2
θTt Σ̂sθt − θTt µ̂

}
,

subject to θTt qN,M = 1,

where in the empirical analysis, Σ̂g is set to a constant correlation matrix,

denoted by CC, as introduced by Ledoit and Wolf (2004).

▷ Constraining the L2-norm is equivalent to shrinking the sample covariance matrix

towards the identity matrix. In the empirical analysis, this is denoted by NC2.

▷ The sparse and stable portfolio is determined by combining both sparsity (i.e.,

L1-regularization) and stability (i.e., covariance shrinkage or L2-regularization).
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International Portfolio Optimization: Empirical Analysis

▷ Daily data ranging from 1999 to 2019 and encompassing 21 equity broad market

indices denoted in 10 currencies.

▷ Spot and forward exchange rate data for 10 currencies: Australian dollar,

Canadian dollar, Swiss franc, euro, British pound, Japanese yen, US dollar,

Norwegian krone, New Zealand dollar, and Singapore dollar.

▷ The investor rebalances her portfolio every month and hedging is only possible one

period ahead.

▷ All returns are computed net of transaction costs – 20 bp for assets and 2 bp for

currency forwards.

▷ Parameters are estimated on a 12-month rolling estimation window and the

penalization parameters are determined via cross-validation.
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International Portfolio Optimization: In-Sample Analysis

Figure 3: In-sample efficient frontiers for the dataset of 21 equity indices and 10 currencies

from 1999 to 2019. The curves were derived by varying the risk aversion parameter γ in both

steps of the separate optimization as well as in the joint optimization.
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International Portfolio Optimization: Out-of-Sample Analysis

Sharpe ratio Sortino ratio Certainty equivalent Volatility

Sep. Joint Sep. Joint Sep. Joint Sep. Joint

MV 0.3481 0.4625 0.3939 0.5314 0.0217 0.0322 0.2167 0.2701

MV-CB 0.2488 0.4119 0.2779 0.4919 0.0091 0.0390 0.1924 0.2005

NC1 0.4586 0.5035 0.5474 0.5702 0.0489 0.0580 0.1091 0.1425

NC1-CB 0.4496 0.5048 0.5193 0.6020 0.0473 0.0552 0.1046 0.1170

NC2 0.5107 0.5600 0.6142 0.6620 0.0582 0.0641 0.1343 0.1296

NC2-CB 0.5198 0.5171 0.6319 0.6246 0.0583 0.0573 0.1255 0.1212

NC1-CC 0.3699 0.4542 0.4307 0.5092 0.0394 0.0510 0.1150 0.1443

NC1-CC-CB 0.3880 0.5168 0.4397 0.6125 0.0413 0.0569 0.1110 0.1182

NC1-NC2 0.4962 0.6172 0.6305 0.7646 0.0488 0.0659 0.0883 0.1082

NC1-NC2-CB 0.5532 0.6810 0.6882 0.8314 0.0538 0.0715 0.0881 0.1046

1/N 0.3413 0.4071 0.0357 0.1302
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International Portfolio Optimization: Out-of-Sample Analysis

Figure 4: This figure portrays the cumulative wealth evolution for the two sparse and stable

portfolio rules, i.e., the NC1-NC2 portfolio (top) and the NC1-NC2-CB portfolio (bottom),

with an initial wealth of $1. All reported values are adjusted for transaction costs. 53/71



International Portfolio Optimization: Conclusion

▷ This paper proposes a sparse and stable international asset allocation framework

where asset and currency weights are determined in a regularized fashion =⇒
contribution to the literature on multi-currency asset allocation.

▷ The introduced sparse and stable joint optimization outperforms the equivalent

approaches based on separate (i.e., currency overlay) optimization as well as the

equally weighted fully hedged portfolio net of transaction costs.

▷ Employing currency overlay strategies is suboptimal not only in sample but also

from the out-of-sample perspective =⇒ improvement via regularized joint

optimization.
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Regularized Multi-Currency Expected Shortfall Portfolios

Lucescu & Ulrych (2024), Work in Progress

▷ We develop a regularized optimization framework for multi-currency portfolio

allocation under expected shortfall (ES). Two approaches are considered: a

separate currency overlay and a joint asset-currency optimization.

▷ To address instability in ES minimization, we apply L1 and L2 regularization and

a leverage constraint to promote sparsity and numerical stability.

▷ Out-of-sample backtests with transaction costs show improved risk-adjusted

returns and lower tail risk compared to unregularized and naive benchmarks.

▷ Joint optimization yields better results in a small asset universe, where

asset-currency interactions are more effectively captured, while the overlay

approach performs better in a large universe due to its dimensionality reduction.
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Expected Shortfall Optimization

▷ Optimal expected shortfall portfolio is given by

x∗
t = argmin

xt
ESt,β[RP,t+1], with xT

t 1N = 1. (4)

▷ As shown by Rockafellar and Uryasev (2000), (4) can be recast as:

x∗
t = argmin

xt ,α
α+ (1− β)−1Et [(−xT

t Rt+1 − α)+]. (5)

▷ Sampling the historical return distribution, (5) can be linearized:

x∗
t = argmin

xt ,α
α+

1

q(1− β)

q∑
k=1

uk ,

subject to the linear constraints

N∑
i=1

xi = 1, α > 0, uk ≥ 0, and xT
t Rk + α+ uk ≥ 0 for k = 1, ..., q.
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Regularized Expected Shortfall Portfolios

▷ ES minimization is prone to numerical instability. This is particularly the case in

high-dimensional problems.

▷ L1-norm penalty:

• Defined as ∥x∥1 =
∑N

i=1 |xi |.
• Limits sensitivity to colinearities. Promotes sparse solutions that are

practically appealing.

▷ L2-norm penalty:

• Defined as ∥x∥22 =
∑N

i=1 x
2
i .

• Directly removes instability in ES minimization. Related to shrinkage

methods in covariance estimation.

▷ Assets leverage constraint:

• Defined as ∥xt∥1 ≤ ℓ for ℓ ≥ 1. Practical control over portfolio exposure.
57/71



Regularized Expected Shortfall: Optimization Setup

▷ The return of a portfolio P hedged with currency forwards is equal to:

Rh
P,t+1 =

N∑
i=1

xi ,tR
fh
i ,t+1+

M∑
c=1

ψc,t(ec,t+1 − fc,t).

▷ Variables at time t:

• µfh: Expected fully hedged asset return vector E[R fh
t+1] ∈ RN .

• µc : Expected excess currency return vector E[et+1 − ft ] ∈ RM .

• γ: Investor’s relative risk aversion parameter, with γ > 0.

• β: Confidence level at which the ES is evaluated, with β ∈ (0, 1).

• ℓ: Maximum leverage allowed for the asset portfolio, with ℓ ≥ 1.
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Regularized Expected Shortfall: Separate Optimization

▷ Asset-level optimization problem:

x∗
t = argmin

xt

{
−xT

t µ
fh + γESβ(xT

t R fh
t+1) + λa1∥xt∥1 + λa2∥xt∥22

}
,

subject to xT
t 1N = 1, ∥xt∥1 ≤ ℓ.

▷ Second-step currency overlay problem:

ψ∗
t | x∗

t = argmin
ψt

{
−ψT

t µ
c + γESβ

(
x∗T
t R fh

t+1 +ψ
T
t (et+1 − ft)

)
+ λc1∥ψt∥1 + λc2∥ψt∥22 | x∗

t

}
.

▷ Separate penalizing terms for assets (λa1, λ
a
2) and currencies (λc1, λ

c
2) reflecting

different budget constraints and transaction costs.
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Regularized Expected Shortfall: Joint Optimization

▷ Variables at time t:

• θt : Combined decision vector (xt ,ψt)
T ∈ RN+M .

• Rt+1: Combined return vector (R fh
t+1, et+1 − ft)T ∈ RN+M .

• µ: Joint expected return vector E[Rt+1].

▷ Joint optimization:

θ∗t = argmin
θt

{
−θTt µ+ γESβ(θTt Rt+1) + ∥S1θt∥1 + ∥S2θt∥22

}
,

subject to θTt qN,M = 1, ∥Lθt∥1 ≤ ℓ,

where vector qN,M controls the budget constraint, vector L enforces the leverage

constraint, and diagonal matrices S1 and S2 control regularization.

▷ Both optimization problems remain tractable, and can be expressed as quadratic

programs with linear constraints.
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Regularized Expected Shortfall: Empirical Analysis

▷ Daily data ranging from 1990 to 2023, encompassing 14 major economies and

individual assets denominated in their corresponding currencies.

▷ Two investment universes:

• Small Universe: Largest 10 companies by market capitalization per economy.

• Large Universe: Largest 50 companies by market capitalization per economy.

▷ The investor rebalances their portfolio every quarter and hedging is only possible

one period ahead.

▷ Empirical analysis is conducted assuming infinite risk aversion γ = ∞, eliminating

noisy mean estimates.

▷ All returns are presented net of transaction costs.
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Regularized Expected Shortfall: Empirical Analysis

▷ Parameters are estimated on a 10-year rolling estimation window and the

penalization parameters are determined via temporal validation.

▷ We evaluate ES at the 80% confidence level, striking a balance between downside

risk and out-of-sample performance.

▷ Out-of-sample backtest of the following strategies:

• 1/N: The fully hedged equally-weighted portfolio.

• OVERLAY: The unregularized two-step (currency overlay) portfolio.

• OVERLAY-REG: The regularized overlay portfolio with L1 and L2 penalties.

• JOINT: The unregularized joint optimization portfolio.

• JOINT-REG: The regularized joint optimization portfolio with L1 and L2

penalties.
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Regularized Expected Shortfall: Out-of-Sample Analysis

Panel A: Small Universe

1/N OVERLAY JOINT OVERLAY-REG JOINT-REG

ES (%) 18.06 10.86 10.48 10.44 10.28

Volatility (%) 13.76 8.19 7.96 7.93 7.81

Max Draw (%) 53.42 30.01 28.06 28.87 28.55

ES Ratio 0.12 0.07 0.13 0.12 0.17

Sharpe Ratio 0.15 0.10 0.17 0.15 0.22

Sortino Ratio 0.19 0.12 0.22 0.19 0.28

Turnovera 0.24 1.29 1.18 0.96 1.02

Turnoverc 0.92 2.36 2.97 1.70 1.71

Panel B: Large Universe

1/N OVERLAY JOINT OVERLAY-REG JOINT-REG

ES (%) 16.34 7.85 7.81 6.76 6.69

Volatility (%) 12.39 6.16 6.09 5.90 5.78

Max Draw (%) 54.86 39.29 39.56 42.53 41.02

ES Ratio 0.25 0.32 0.31 0.53 0.51

Sharpe Ratio 0.33 0.41 0.40 0.61 0.59

Sortino Ratio 0.40 0.51 0.51 0.72 0.71

Turnovera 0.24 3.36 3.28 1.45 1.42

Turnoverc 0.92 0.95 1.75 1.25 1.19 63/71



Regularized Expected Shortfall: Cumulative Returns

64/71



Regularized Expected Shortfall: Rolling ES
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Regularized Expected Shortfall: Conclusion

▷ This paper addresses known challenges of downside risk optimization in

high-dimensional international setting.

▷ We propose a regularized optimization framework for multi-currency portfolio

allocation under expected shortfall.

▷ Regularized portfolios outperform unregularized and näıve benchmarks in terms of

realized risk and risk-adjusted returns net of transaction costs.

▷ The joint optimization delivers superior performance when the investment universe

is relatively small, while the separate overlay approach proves more effective in

larger universes due to its dimensionality reduction.
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Currency Risk Management:

Summary and Implications



Key Takeaways on Currency Risk

▷ Currency risk is a major component of international investments, and effective

management is crucial for portfolio stability.

▷ Currency exposure is not only a source of risk — it can also be a strategic return

driver when appropriately managed.

▷ Traditional approaches often separate asset and currency decisions (currency

overlay), but this may ignore important interactions.

▷ Hedging strategies based on return variance or expected shortfall require robust

modeling to avoid instability and poor out-of-sample performance.
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Insights from My Research

▷ Joint optimization of assets and currencies generally outperforms separate overlay

approaches in smaller asset universes, where asset-currency dependencies can be

estimated more reliably.

▷ Currency overlay performs better in larger universes, where its dimensionality

reduction makes it more robust and scalable.

▷ Regularization techniques (sparsity, shrinkage) improve numerical stability and

enhance out-of-sample risk-adjusted returns.

▷ Ambiguity-aware models can induce economically-informed shrinkage, stabilizing

currency exposure and reducing estimation error.
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Practical Implications

▷ Integrating asset and currency decisions within a single optimization framework

can streamline portfolio construction and reduce operational complexity.

▷ Portfolio managers should carefully choose between overlay vs joint optimization

depending on the portfolio size and performance objective.

▷ Accounting for downside risk and transaction costs ensures portfolio strategies

remain relevant and feasible under real-world conditions.

▷ Combining risk modeling with statistical tools (e.g., regularization, robust

estimation) can help bridge theory and practice.
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Open Questions and Future Work

▷ How can currency strategies adapt to regime shifts, structural breaks, or

geopolitical shocks?

▷ Can machine learning improve forecasts of risk premia or hedging performance

without sacrificing interpretability?

▷ How can robustness to model uncertainty improve portfolio stability under

changing market conditions?
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Thank you for your attention!
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Machine Learning: The Future of

Financial Risk Management?



The Big Data Opportunity

▷ New technologies have made available vast quantities of digital data.

• 90% of all data in existence has been created in the past two years!

▷ There is a paradigm shift from machine programming to machine learning.

• In conventional programming, tell computer what to do, breaking big

problems into many small, precisely defined tasks.

• Learn (estimate) from observational data, instead of requiring pre-specified

logic, for decision making and problem solving.
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Can Machines Learn Finance?

▷ Machines capable of many things (playing chess, speech recognition, translation,

self-driving cars etc.), but can they learn finance?

▷ Finance is different!

• Low signal-to-noise ratio.

• Non-stationary, evolving markets.

• Competition.

▷ Market efficiency: Returns must be dominated by news in well-functioning

markets. Low signal-to-noise ratio is not a coincidence. Market efficiency

reinforces it!

▷ Despite the huge hype around machines and bots in asset and risk management,

understanding the true value of machine learning in finance is still in its early

stages.
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What Is Machine Learning?

▷ Goal: Find a model that is flexible enough to accommodate important patterns

but not so flexible that it overspecializes to specific data set.

• Most of the modern methods concern with high dimensional models: N

observations, P parameters, and N ≈ P, or N < P.

▷ Supervised learning

• Want to predict a target variable Y with input variables X .

• Also called: “predictive analytics”.

▷ Unsupervised learning

• Want to find structure within a set of variables X .

• Also called: “exploratory data analysis”, “fancy descriptive statistics”.
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What Is Machine Learning?

The definition of “machine learning” is inchoate and is often context specific. We use

the term to describe:

i) A diverse collection of high-dimensional models for statistical prediction, combined

with

ii) Regularization methods for model selection and mitigation of overfit, and

iii) Efficient algorithms for searching among a vast number of potential model

specifications.
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Statistical Learning vs Machine Learning

▷ Machine learning arose as a subfield of Artificial Intelligence.

▷ Statistical learning arose as a subfield of Statistics.

▷ There is much overlap — both fields focus on supervised and unsupervised

problems:

• Machine learning has a greater emphasis on distribution free approaches,

large scale applications and prediction accuracy.

• Statistical learning emphasizes models and their interpretability, and precision

and uncertainty.

▷ But the distinction has become more and more blurred, and there is a great deal

of “cross-fertilization”.

▷ Machine learning has the upper hand in Marketing!
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Predictive Modelling

▷ We generically refer to a response or target that we wish to predict as Y .

Features, or inputs, or predictors are named as X1, X2, etc.

▷ We can refer to the input vector collectively as

X =

X1

X2

X3

 .
▷ Predictive relationship is characterized by a model that links a target with input:

Y = f (X ) + ϵ,

where ϵ captures measurement errors and other discrepancies.

▷ Note: f (X ) represents the signal and ϵ the noise.
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What Is f (X ) Good For?

Prediction vs Inference:

▷ With a good f we can make predictions of Y at new points X = x .

▷ We can understand which components of X = (X1,X2, . . . . ,Xp) are important in

explaining Y , and which are irrelevant, e.g. Seniority and Years of Education

have a big impact on Income, but Marital Status typically does not.

▷ Depending on the complexity of f , we may be able to understand how each

component Xj of X affects Y .
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What is a good value for f (X ) at any selected value of X , say X = 18? There can be

many possible Y values at X = 18. A good value is

f (18) = E(Y |X = 18),

which means expected value (average) of Y given X = 18. This ideal

f (x) = E(Y |X = x) is called the regression function. 82/71



The Regression Function f (x)

▷ It is also defined for vector X ; e.g.

f (x) = f (x1, x2, x3) = E (Y | X1 = x1,X2 = x2,X3 = x3)

▷ It is the optimal predictor of Y with regard to mean-squared prediction error:

f (x) = E(Y | X = x) is the function that minimizes E[(Y − g(X ))2 | X = x ] over

all functions g at all points X = x .

▷ ϵ = Y − f (x) is the irreducible error — i.e. even if we knew f (x), we would still

make errors in prediction, since at each X = x there is typically a distribution of

possible Y values.

▷ For any estimate f̂ (x) of f (x), we have

E[(Y − f̂ (X ))2 | X = x ] = [f (x)− f̂ (x)]2 +Var(ϵ),

where we assumed f̂ and X are fixed and [f (x)− f̂ (x)]2 represents the reducible

error and Var(ϵ) the irreducible error.
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Parametric and Structured Models

The linear model is an important example of a parametric model:

fL(X ) = β0 + β1X1 + β2X2 + · · ·+ βpXp.

▷ A linear model is specified in terms of p + 1 parameters β0, β1, . . . , βp.

▷ We estimate the parameters by fitting the model to training data.

▷ Although it is almost never correct, a linear model often serves as a good and

interpretable approximation to the unknown true function f (X ).
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A linear model f̂L(X ) = β̂0 + β̂1X gives a reasonable fit here.

A quadratic model f̂Q(X ) = β̂0 + β̂1X + β̂2X
2 fits slightly better.
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Linear regression model fit to the simulated data.
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Very flexible spline regression model fit to the simulated data. Here the fitted model

makes no errors on the training data! Also known as overfitting.
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Assessing Model Accuracy

Suppose we fit a model f (x) to some training data Tr = {xi , yi} for i = 1, . . . ,N, and

we wish to see how well it performs.

▷ We could compute the average squared prediction error over Tr:

MSETr = Avei∈Tr[yi − f̂ (xi )]
2.

This may be biased toward more overfit models.

▷ Instead we should, if possible, compute it using fresh test data Te = {xi , yi} for

i = 1, . . . ,M:

MSETe = Avei∈Te[yi − f̂ (xi )]
2.
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Black curve is the truth. Red curve on right is MSETe, grey curve is MSETr. Orange,

blue and green curves/squares correspond to fits of different flexibility.
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Bias-Variance Trade-Off

▷ Suppose we have fit a model f (x) to some training data Tr, and let (x0, y0) be a

test observation drawn from the population. If the true model is Y = f (X ) + ϵ

(with f (x) = E[Y | X = x ]), then

E[y0 − f̂ (x0)]
2 = Var(f̂ (x0)) + [Bias(f̂ (x0))]

2 +Var(ϵ).

▷ The expectation averages over the variability of y0 as well as the variability in Tr.

Note that Bias(f̂ (x0)) = E[f̂ (x0)]− f (x0).

▷ Typically as the flexibility of f̂ increases, its variance increases, and its bias

decreases. So choosing the flexibility based on average test error amounts to a

bias-variance trade-off.
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Bias-Variance Trade-Off

Training- vs test-set performance (in terms of prediction error) given model complexity.
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Bias-Variance Trade-Off

▷ Trade-off ability to extract signal (bias) with overfitting (variance).

• More complicated models tend to approximate f better, but run into the risk

of fitting ϵ - specific to the sample you have.

• Always leave some room for “noise” - the effect of all remaining covariates

(not present the model, usually also non-observable).

▷ Difficulty hinges on the signal-to-noise ratio, dimensionality, and sample size.

• Lower signal-to-noise ratio or higher dimensionality result in an elevated risk

of overfitting: simpler models tend to forecast better!

• Imposing assumptions/structures (regularization, shrinkage, sparsity, priors)

helps and is often necessary. Otherwise, one needs lots of data!
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Why Applying Machine Learning to Risk Management?

▷ Reason 1: Measurement of an asset’s expected (excess) return (=risk premium) is

fundamentally a problem of prediction!

• A risk premium is a conditional expectation of a future realized (excess)

return.

• Machine learning methods are largely specialized for prediction tasks, thus,

ideally suited to risk premium measurement.

▷ Reason 2: Functional form is unknown and likely complex.

• Theoretical literature offers little guidance of winning lists of conditioning

variables and functional forms.

• Machine learning methods are designed to approximate complex non-linear

associations. They cast a wide net in model search. Parameter penalization

and conservative model selection criteria help avoid overfit and false

discovery. 93/71



Why Applying Machine Learning to Risk Management?

▷ Reason 3: The collection of candidate conditioning variables is large and messy!

• Researchers and practitioners have accumulated a staggering list of return

predictors (stock level predictive characteristics, macroeconomic predictors of

the aggregate market).

• They are often close cousins and highly correlated.

• Historical data in finance are typically not large in size (barely 10s of years of

data + lack of stationarity).

• With the emphasis of variable selection and dimensionality reduction,

machine learning is well suited for such challenging empirical issues.
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Have You Already Used Machine Learning?

▷ Yes, probably without knowing or emphasizing it.

• Dimension reduction: use portfolios instead of individual assets.

• Variable selection and factor analysis: CAPM, Fama-French factors.

• Nonlinearity: sort returns by characteristics.

• Priors (regularization): use economic intuition/theory.

• . . .
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Caveats of Machine Learning

▷ Data snooping: find patterns when there are none.

• Machine learning (ML) makes data snooping even easier.

▷ Prediction vs Causal Inference

• ML aims at better prediction instead of valid inference (hot area: ML +

econometrics).

• Of course, the usual caveat still applies: correlation is not causation.

▷ Biased data: discrimination, inequality.

• Artificial Intelligence is only human.

▷ Interpretability: black-boxes, tricks without theoretical justification.

• Investors, clients, regulators, etc., demand transparency.

• Black-box algorithms may not necessarily beat white-box ones.

• Need more research or trade-off performance with interpretability.
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